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ABSTRACT 

 

Interest in the application of fuzzy set Qualitative Comparative Analysis (fsQCA) has 

increased markedly among political scientists in recent years. Although fsQCA is often 

contrasted with regression analysis, questions of functional form have thus far been hardly 

addressed. However, functional form matters as much in the former tool kit of social enquiry 

as it does in the latter. This article demonstrates how coverage as a measure of set-relational 

fit can guide the formulation of transformational rules similar to the use of the coefficient of 

determination in regression-analytic tests of functional misspecification. Interaction effects 

between membership function and crossover anchor choice on coverage are analysed in the 

context of set-theoretic relations of sufficiency between condition and outcome. Depending 

on the relative location of the crossover anchor, changes in the transformational rules by 

which base variables are calibrated can increase or decrease coverage similar to the effect of 

changes in functional specification on the coefficient of determination. Most importantly, 

significant reductions in uncovered membership relative to total membership provide an 

explicit and transparent foundation on which calibration strategies can be based.
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Introduction1 
 

Interest in fuzzy set Qualitative Comparative Analysis (fsQCA) has increased markedly 

among political scientist in recent years, with applications in fields ranging from 

constitutional executive control (Pennings 2003), over government backing for supra-

nationalism in the EU (Koenig-Archibugi 2004), support for far-right parties (Veugelers and 

Magnan 2005), post-communist respect for civil liberty (Skaaning 2007), social inequality in 

education (Freitag and Schlicht 2009) and unpopular social policy reforms (Vis 2009), to 

effects of direct democracy on minority rights legislation (Christmann 2010).
2
 The idea of 

fuzzy sets had already been introduced by Zadeh (1965) as a modelling language suited to the 

multivalence inherent in the soft sciences, but while it has found much favour with the 

information science and engineering community, the popularization in political science had to 

await the breakthrough contributions made by Ragin (2000, 2008).
3
 As an alternative to 

traditional quantitative methods of scientific enquiry, fsQCA has established itself firmly in 

comparative research with small and medium-N data sets (Rihoux and Ragin 2009), but has 

also been used in studies with larger numbers of observations in the hundreds (e.g., Thiem 

2010) and even thousands (e.g., Ragin and Fiss 2008). Thanks to the introduction of 

appropriate software, computational costs have been lowered tremendously  (Ragin, Drass, 

and Davey 2006). Although fsQCA has undoubtedly enriched social scientists’ 

methodological tool kit by emphasizing advantages over and differences from traditional 

regression analysis, aspects that bridge the two research methods have been largely neglected 

by its advocates.
4
 

Specification tests of functional form on the basis of changes in the ratio of explained 

variation to total variation - the coefficient of determination R
2
 - are part and parcel of 

regression analysis.
5
 If the functional form between regressors and regressand is misspecified, 

the zero-conditional-mean assumption will be violated and estimators be biased. Usually, the 

coefficient of determination is likely to be significantly smaller than in a properly specified 

                                                 
1 I thank Gary Goertz, Emelie Lilliefeldt, Mario Quaranta, Charles Ragin, Matthew Ryan, Bianca Sarbu, Maarten 

Vink and the two anonymous reviewers for helpful comments and suggestions. A previous version of this paper 

was presented at the 3rd ECPR Graduate Conference, Dublin City University, 30 August – 1 September 2010. 
2 For a review of fuzzy set applications in political science, see Nurmi and Kacprzyk (2007). 
3 For one of the first popular books on fuzzy logic and a very good introduction to its evolution in the hard 

sciences, see Kosko (1993). The first scientific text on the use of fuzzy sets in the social sciences has been 

presented by Smithson (1987). 
4 Smithson and Verkuilen (2006) are a notable exception. 
5 For example, Ramsey’s (1969) regression specification error test (RESET) checks for non-linear relationships 

by adding polynomials of the fitted values ŷ to the model y = β0 + β1x1 + … + βkxk + δ1ŷ
2 + δ2ŷ

3 + δ3ŷ
4. If the 

difference in explained variation is large enough, the F-statistic on δ will be significant. Similarly, non-nested 

alternatives can be tested by means of an encompassing hyper-model (Mizon and Richard 1986), or a model 

augmented with the fitted values from the alternative (Davidson and MacKinnon 1981). 
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model.
6
 While none of the Gauss-Markov assumptions required for the unbiasedness of the 

estimators has an equivalent in fsQCA, coverage provides a simple measure of empirical 

importance similar to the coefficient of determination in regression analysis (cf. Ragin 2008: 

63).
7
 As such, coverage determines the relevance that is attached to a causal path. However, 

while much textbook space has been expended on the specification of anchors, a discussion 

about the direct and indirect effects of using different membership functions has not been 

initiated so far. In point of fact, it has even been discouraged. 

It is argued in this article that, for applications where fuzzy set membership scores are 

assigned by transforming interval or ratio-scale base variables, differences in coverage can be 

a useful criterion in the decision on a specific functional form in as much the same way as 

statistically significant differences in the coefficient of determination suggest different 

functional relations. This parallel notwithstanding, in fsQCA the question of functional form 

does not directly arise in the evaluation of the set-relational fit, but already during the process 

of calibration. Under some conditions, the choice of different membership functions induces 

differences in coverage, under others it does not. The relative location of the crossover anchor 

is the decisive interaction ―variable‖ in this respect. The main conclusion to be drawn from 

the results of this article can be summarized as follows: By invoking differences in coverage, 

the choice for a specific membership function receives an explicit and transparent foundation 

in strategies aimed at generalizations as well as case-centred comparative research. The way 

in which base variables are transformed thus in turn determines the relevance scholars attach 

to causal paths.
8
 

Four membership functions that act as parsimonious baseline choices for 

transformations to fuzzy sets with continuum endpoint labels regularly used in political 

science, such as ―democratic‖, ―wealthy‖ or ―social inequality‖, illustrate the case. More 

specifically, the logistic function - the standard membership function implemented in the 

fsQCA software (Ragin 2008; Ragin, Drass, and Davey 2006) - is compared to three 

alternatives. These are the linear function, the quadratic function, and the root function.
9
 All 

are applied to transform simulated base variables into conditions whose set-theoretic relation 

to the outcome is consistent with sufficiency. In order to demonstrate the interactive effect 

                                                 
6 I do not engage herein in discussions on the general or model-specific usefulness of this measure. See the 

controversy between King (1990), Lewis-Beck and Skalaban (1990), and Achen (1990). 
7 Coverage can be divided into raw coverage and unique coverage similar to the distinction between the multiple 

and the partial coefficient of determination, but this distinction is not necessary here, since minimal formulas 

consist of a single condition as the only prime implicant, essentially corresponding to a simple regression model 

with only one regressor. 
8 Consistent with standard terminology as suggested by Rihoux and Ragin (2009: 181-184), I will refer to the 

causal condition / condition variable simply as ―condition‖ and to the outcome variable as ―outcome‖. 
9 The term ―root‖ will be used as shorthand to mean ―square root‖. 
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between the membership function and the crossover anchor choice on the coverage scores of 

these relations, the analysis is conducted in a first step for three representative anchors and a 

specific base variable. In a second step, it is extended to a continuous range of anchors from a 

very large number of simulated base variables. The exclusion and the inclusion anchors are 

irrelevant in this connection, because they do not interact with the membership functions in 

the determination of coverage over the crucial sub-domains.
10

 

The article is structured around three sections. Firstly, the concept of coverage is 

elaborated on in the context of set-theoretic relations indicating sufficiency. Although this 

article focuses on sufficiency, the logic behind the results is equally valid in the context of 

necessity relations. Secondly, the specific mechanism by which the values of a base variable 

are transformed into fuzzy set membership scores is explained in more detail. In the third 

section, the membership functions are brought together with the crossover anchor in order to 

demonstrate their interactive effect on coverage. Thus, the sections are ordered in the reverse 

way of the procedural protocol usually adhered to in fsQCA applications, because the 

downstream effects of the initial calibration procedure have so far been least understood. The 

conclusions recapitulate the argument, point towards avenues for future research and suggest 

ways to advance and improve scholarly work. 

Coverage in Set Relations of Sufficiency 
 

Set-theoretic relations between fuzzy sets can be conveniently visualized using a bivariate 

plot as shown in Figure 1. It displays the set membership score of the condition C on the 

abscissa, and the set membership score of the outcome O on the ordinate. Cases above or on 

the diagonal line O = C are consistent with a set-theoretic relation of sufficiency between C 

and O, concisely expressed as C  O. In contrast, those below or on the diagonal are 

consistent with a set-theoretic relation of necessity between C and O, expressed as C  O. 

For example, q in Figure 1 is consistent with C  O, but inconsistent with C  O, whereas p 

is inconsistent with C  O, but consistent with C  O. If all cases fall above the diagonal, the 

set-theoretic relation is perfectly consistent with hypotheses about causal relations of 

sufficiency. If they all fall below it, it is perfectly consistent with hypotheses about causal 

                                                 
10 This is not exactly true of the logistic function, which is defined over only two, instead of four, sub-domains, 

so that cases below the exclusion anchor always contribute more to coverage than the same cases transformed by 

the other membership functions. However, cases above the inclusion anchor always contribute less to coverage, 

so that any resulting differences are highly likely to be negligible. 
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relations of necessity.
11

 If all cases fall on the diagonal, the set-theoretic relation indicates 

necessity and sufficiency. In the remainder of this article, the focus will be on set-theoretic 

relations of sufficiency.
12

 

 

 

Once sufficiency of a condition for an outcome has been established based on an appropriate 

proportion of cases that are consistent with this set-theoretic relationship, the measure of 

coverage provides a simple way to assess its empirical relevance by means of the degree to 

which set membership in C covers set membership in O (cf. Ragin 2006: 292). Often 

consistency works against coverage, but any assessment of the latter requires that the former 

has already been adequately addressed by the researcher.
13

 If coverage is low, the condition 

may be trivial in its relevance to establish sufficiency. Conversely, high coverage points 

                                                 
11 Set-theoretic relationships need not necessarily assume causality. However, causal relationships are of most 

interest to social scientists. 
12 This choice is without loss of generality with regards to the logic behind the results, since assessments of 

coverage in relations of necessity simply reverse the constituent parts of their formulas. 
13 Different measures of consistency, also sometimes referred to as inclusion indexes, exist, but the standard 

index is the fraction of membership in the condition that is covered by membership in the outcome. 

 

Figure 1: Coverage and Fuzzy Set-Theoretic Relations 
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towards a non-trivial condition.
14

 Let coverage be denoted by . In set-theoretic relations of 

sufficiency it is computed by dividing the scalar cardinality of the intersection between C and 

O by the scalar cardinality of O.
15

 Put differently, it is the fraction of total membership in the 

outcome that is covered by membership in the condition with 

 

       
           

 
   

   
 
   

  

 

As such, coverage closely resembles the coefficient of determination R
2
 in regression analysis, 

which is the fraction of the sample variation in the regressand that is explained by variation in 

the regressors 

 

   
           

   

          
   

 

 

Both measures provide a summary statistic of how closely the model fits the data. The 

construction of coverage implies three simple, yet important facts. Firstly, given the same 

condition membership score ci = cj with i  j, any case i with a lower outcome membership 

score oi than oj always contributes more to . Secondly, given the same outcome membership 

score oi = oj, any case i with a higher condition membership score ci than cj always contributes 

more to . And thirdly, given the same ratio of covered membership to total membership 

between two cases i and j, it is irrelevant to which degree they are members of C and O as 

each contributes equally to .
16

 Graphically, this would include any case on the grey isoquant 

through d shown in Figure 1, excluding the origin. Case b contributes exactly as much to  as 

d, whereas t contributes more, and z contributes less. 

 Thus, coverage provides a simple measure of set-relational fit that assesses empirical 

importance similar to the coefficient of determination, which changes with the ratio of 

explained variation to total variation as a result of, for example, a change in the functional 

relationship between regressors and regressand. This relationship does not directly arise 

between the condition and the outcome, but during the process of designing the fuzzy set over 

the entire domain as given by the base variable. Referred to as calibration, that process should 

be implemented with a view to ensuring a maximum degree of correspondence between the 

values of the base variable and the qualitative meaning attached to the numerical values of the 

                                                 
14 Empirical triviality may or may not coincide with theoretical triviality, depending on factors in the respective 

research context, such as previous evidence. 
15 The scalar cardinality of a fuzzy set is the sum of membership degrees of its cases. 
16 Essentially, this third point is a generalization of the preceding two. 
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fuzzy set.
17

 However, very few base variables have a natural coding in the unit interval, and 

even if that is the case, pure correspondence in theoretical range does not guarantee 

qualitative correspondence. The mechanism that establishes an explicit rule for transforming 

base variable values to corresponding fuzzy set scores is the membership function. 

Calibration and Membership Functions 
 

As Ragin (2009: 93) puts it, ―[...] the calibration of fuzzy sets is a key operation, to be 

performed with great care‖. Principally, calibration can take three different routes. Direct 

methods draw on expert knowledge to provide membership scores. Indirect methods also use 

expert knowledge, but this has to be processed, often via some curve-fitting method, in order 

to translate it into fuzzy set membership scores. Another method frequently used in political 

science applications is referred to as ―assignment by transformation‖ (Verkuilen 2005).
18

 It is 

based on some function that transforms existent data on an interval or ratio-scaled base 

variable, such as GDP, power capabilities or public opinion, into fuzzy set membership scores 

while taking the substantive meaning of the values on their underlying scale with regards to 

the label of the fuzzy set into account. This correspondence between numerical values and 

qualitative meaning distinguishes the fuzzy set from its base variable, which only measures 

degree, but not kind. 

Two main approaches to transformational assignments can be distinguished to ensure 

correspondence between numerical values and qualitative meaning (cf. Verkuilen 2005: 

481f.). Data-based transformations are internally anchored. They often make use of measures 

of central tendency or spread characterizing the base variable, either because no substantive 

meaning of the fuzzy set label exists or it can be changed almost arbitrarily. Theoretical 

transformations, in contrast, are externally anchored. They depend on the substantive meaning 

of the values in the base variable with respect to the fuzzy set label.
19

 

Irrespective of whether existing knowledge suggests that it be data-based or theoretical, 

fuzzy sets to be designed by the method of transformational assignment first require the 

choice of anchors from their base variable which are mapped onto their corresponding cut-

offs in the fuzzy set. Let fuzzy sets be denoted by A, base variables by X and their specific 

values by xi with i = 1, 2,…, n, anchors from X by  , and cut-offs in A by . Three cut-offs 

                                                 
17 Calibration is also often referred to as fuzzification (cf. Clark et al. 2008: 44). 
18 The indirect method listed here corresponds to the one suggested in Ragin (2008), but his direct method is the 

same as the method of assignment by transformation. 
19  Data-based transformations are not recommended by most advocates of QCA (e.g., Ragin, Strand, and 

Rubinson 2008: 16f.). 



 8 

are relevant, namely 0 for exclusion from A, 0.5 for the crossover at which membership in 

A is most ambiguous, and 1 for inclusion in A. Accordingly, three anchors are required. The 

exclusion anchor e is mapped onto the exclusion cut-off 0, the crossover anchor c onto the 

crossover cut-off 0.5, and the inclusion anchor i onto the inclusion cut-off 1.
20

 

For example, the Regional Authority Index (X) developed by Marks, Hooghe and 

Schakel (2008) measures the extent to which the government of a country is structurally 

layered. It has no theoretical meaning that is external to its construction because specific 

values (xi) are only qualitatively interpretable against their distribution. There is no external 

guidance as to whether a country is more in than out of the set of countries with a highly 

decentralized government structure (A). Measures of central tendency or spread could thus 

guide the choice of e, c and i to anchor 0, 0.5 and 1. 

In contrast, national public opinion figures taken to measure net support for a 

particular government policy (X) require an external specification of . In order to design the 

set of countries with a highly supportive citizenry regarding that particular policy (A), a net 

support rate of c = 0 provides a natural way of anchoring 0.5. If xi  0, there will be more 

opponents than proponents, and the country should be more out of than in A. Conversely, if xi 

 0, there will be fewer opponents than proponents, and the country should be more in than 

out of A. Most probably, there may exist more disagreement about the criteria used in 

anchoring 0 and 1, but it is clear that they should not be data-based, either. 

Once  has been specified, the first step of the calibration procedure is completed. 

Before X can then be transformed into A in the second step, an explicit transformation rule is 

required: the membership function. As many political science concepts are represented as 

continuum endpoint concepts, functions that are strictly increasing over some sub-domains, 

and possibly at least non-decreasing over others, are obvious candidates. In particular, 

cumulative distribution functions have the desired properties. However, in contrast to many 

studies which use regression analysis and argue for or against particular functional 

relationships in their models, researchers using fsQCA have so far been silent on their 

motivation to establish particular transformational rules. Often advice given in textbooks is 

not very helpful: ―In practice, fuzzy set theory works by drawing a curve between opposites 

[...]. Information, substantive knowledge and theories help us to draw this curve. FS [fuzzy 

sets] can take all possible shapes (linear, S-function, Bell-curve, etc), where the specific shape 

should resemble the given concept as closely as possible.‖ (Kvist 2006: 174). But what type 

                                                 
20 I will refer to the ―crossover cut-off‖ simply as ―crossover‖. 
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of curve does the set of, for instance, ―countries with high power capabilities‖ suggest? Linear, 

quadratic or logistic? Schneider and Wagemann (2007) do not even mention the issue of 

membership functions except in a short paragraph reference to Ragin (2008). 

In the standard text on fsQCA, Ragin (2000: 171) himself argues that ―it is important 

not to focus on mathematical functions‖. Similarly, in the sequel he notes that calibration 

procedures seem so forbidding that ―the complex set of computational steps [...] can be 

accomplished with a simple compute command using the software package fsQCA‖ (Ragin 

2008: 91). This does not quite seem the way to go forward in promoting methodological 

literacy. First-year students in mathematics are advised not to trust results of which it is not 

known how exactly they have come about, be they produced by software or not. Without 

opening the black box of calibration to better understand its direct as well as indirect effects, 

users of fsQCA are highly likely to remain as ―push-button‖ as Berg-Schlosser et al. (2009: 

14) accuse the vast majority of scholars using regression analysis to be. The membership 

function, as Verkuilen (2005: 464f.) puts it, ―is the fundamental quantity necessary to use 

fuzzy sets‖, but without an understanding of the fundamentals the simple push of a button 

may have consequential downstream effects to which researchers will remain oblivious. 

Membership functions are as important as anchors, and it is in fact pointless to treat them as 

separate elements in the calibration process, or as steps in the procedural protocol which do 

not require equal care. 

 Consider the procedure applied by Koenig-Archibugi (2004) to assign condition 

membership scores to EU member states in the set of countries with high public support for 

supranational integration in relation to the Common Foreign and Security Policy.
21

 For 

simplicity, let this set be denoted by S. The transformational rule the author establishes is a 

simple cumulative distribution of a uniform density function that normalizes the set and which 

is only mentioned in a footnote. Let S denote that function, let xi be the i
th

 value from the 

base variable X measuring net public support, let e equal the minimum value in X and let i 

equal the maximum value in X. Then the membership function 

 

    
     
     

 

 

looks like an appropriate transformation. It implies a constant rate of convergence towards set 

inclusion between its endpoints and is strictly increasing over its entire domain. Nonetheless, 

by choosing a function which only accommodates e and i, Koenig-Archibugi neglects the 

                                                 
21 The author uses general identity scores from Eurobarometer Survey figures to proxy support. 
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qualitative meaning of the now mechanistically-defined crossover anchor c = (i + e)/2. 

Substituting the values of the two most extreme countries, namely Luxembourg and the UK, 

into the formula yields c = (49.1+(–15.2))/2 = 16.95. With c = 16.95, even countries whose 

net support rates are as solid as 17 per cent only have ambiguous membership in S. Germany, 

where public backing for European integration has had a broad base, does not even pass the 

crossover with a set membership score of 0.47. To make out a strong case for this assignment 

seems but impossible. The vast majority of political scientists familiar with German politics 

would consider its population, masses and elites alike, comparatively supportive of European 

integration and supra-nationalism (e.g., Banchoff 1999; Marcussen et al. 1999). The 

membership function used by Koenig-Archibugi induces a not inconsiderable degree of 

incongruity into the correspondence between X and S. 

This single example illustrates just how important it is to consciously control the 

calibration process, in particular the anchoring of 0.5 in the membership function, for which 

the investigator should always present a rationale (Ragin 2009: 92). It is the reference point of 

maximum ambiguity above which cases are considered more in than out of the set, and below 

which cases are considered more out of than in the set. Thus, the lower c relative to e and i, 

the more cases will shift towards stronger set membership, and the higher c, the more cases 

will shift towards weaker membership. As a result, the anchoring of 0.5 should always be 

guided by internal or external criteria, and it should always precede the formulation of 

transformational rules. 

In the example above, the absence of c from the membership function left the same 

underspecified. Setting c = 0 - the point where there are as many opponents as proponents of 

supra-nationalism - and incorporating it into μS would have been a suitable adjustment. A split 

of the function at c would have turned it into a piecewise rule that had better ensured 

correspondence between degree and kind. In fact, the possibility of an independent choice of 

c requires a membership function to be piecewise-defined. Essentially, the number of 

functions that fulfil these criteria is infinite, and the exact formulation of transitional rules is 

most often a judgement call unless clear contextual evidence of how the concept in question is 

used exists. However, simplicity and easy constructability on the basis of little information are 

important ancillary criteria in this process (Bojadziev and Bojadziev 2007: 23; Klir, St. Clair, 

and Yuan 1997: 80). 
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Besides the linear membership function used by Koenig-Archibugi (2004), by far the 

most popular choice for the assignment of fuzzy set membership scores by transformation has 

been the logistic function.
22

 It is the default used by the current version of the fsQCA software. 

Very similar in shape is the quadratic function. Both are marked by increasing rates of 

convergence towards set inclusion between e and c, referred to as concentration, and 

decreasing rates between c and i, called dilation.
23

 In contrast, the root function is 

characterized by dilation between e and c, and concentration between c and i. It is the 

mirror image of the quadratic function. All four alternatives represent common baseline 

choices in the assignment of fuzzy set membership scores. There is no ex ante reason for why 

the logistic function is preferable to the linear or root function unless clear context-bound 

evidence of concentration below c and dilation above it exists. Even more so, very similar 

patterns of concentration and dilation render the choice of the logistic in preference to the 

                                                 
22 While Ragin (2000: 171) still leaves the membership function choice to the judgement of the researcher, only 

the logistic function is proposed by Ragin (2008). 
23 In fact, the linear function is a special case of the polynomial function class to which also the quadratic 

belongs. But it is unique in its neutrality with respect to concentration and dilation. 

 

Table 1: Four Baseline Membership Functions 
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quadratic function a question of computational convenience rather than substantive 

considerations. 

While the three alternatives are capable of producing set membership scores in the unit 

interval, practically the logistic function is not. Thus, I follow Ragin (2008) with regards to 

the logistic function in using 0.05 instead of 0 as the exclusion cut-off, and 0.95 instead of 

1 as the inclusion cut-off. Table 1 lists the piecewise-defined linear function μlin, the 

quadratic function μquad, the root function μroot and the logistic function μlog. All but the 

logistic function are defined over four sub-domains, the first of which contains all cases 

whose value falls below or equals e. Over this sub-domain, set membership scores are always 

zero. The second sub-domain contains all cases with values between e and c, including c. 

Over this range, cases have only weak set membership. The third sub-domain contains all 

cases whose value lies between c and i, including i. Their associated set membership can be 

described as strong. All remaining cases whose value falls above i are full members of the set. 

With regards to the logistic function, only two sub-domains are needed, the first for all cases 

with values below c, and the second for all cases with values equal to or above c. 

The individual effect of changes in the crossover anchor and the membership function 

on the distribution of membership scores in A can be seen in Figure 2. An artificial base 

variable X with random values x1, x2,…, x30, representing a medium-N data set, was generated 

from a standard normal distribution and positivized by adding the modulus of the minimum to 

each value.
24

 The exclusion and inclusion anchors e and i were fixed at the 5
th

 and 95
th

 

percentile of X respectively. They are thus an example of anchors whose specification is based 

on internal criteria since the base variable is generic without a qualitatively meaningful scale. 

Each of the four membership functions, μlin in sub figure 2a, μquad in 2b, μroot in 2c and μlog in 

2d was then combined with three different crossover anchors c in designing A. 

The first of these, l = e + (i – e)/4 (light-grey dots), is a relatively low value 

between e and i, causing the vast majority of cases to have strong membership in A. In the 

second specification, m = e + (i – e)/2 (grey dots), about as many cases lie above 0.5 as 

below it. The third anchor, h = e + 3/4(i – e) (black dots), models a situation with a 

relatively high threshold for strong membership so that the vast majority of cases have only 

weak membership in A. All functions are symmetric around c when c = m. As c decreases 

to l, more and more cases are ―elevated‖ to a score above 0.5, while as it increases to h, 

more and more cases are ―relegated‖ to a score below 0.5. 

                                                 
24 This was simply done for reasons of graphical presentation. R 2.11.1 was used in producing the results in the 

remainder of this article. All code is available from the author on request. 
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After the main concepts of coverage, crossover anchor and membership function have 

been introduced and their relationship to each other explained, the next section now shows 

how the two steps of calibration, namely specification of  and μ, impact on coverage. More 

specifically, it shows why coverage depends on the interaction between functional form and 

the relative location of c, providing a suitable rationale for choosing one membership 

function over another if this criterion is consistent with the researcher’s calibration strategy. It 

is further demonstrated that the logistic function may not be a good choice in this connection. 

In fact, it may never be the best choice. 

Coverage and the Choice of Membership Function 
 

Recall that coverage is the ratio between covered membership and total membership, similar 

to the coefficient of determination being the ratio between explained and total variation. This 

way of computation implies that coverage always increases with decreasing total membership 

 

Figure 2: Calibration with varying membership function and crossover anchors 
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holding covered membership fixed, increasing covered membership holding total membership 

fixed, or any other combination that fulfils the following inequality 

 
  
  

 
   
   

   

 

with 0  a  1/ci and 0  a  1/oi. In order to keep things simple, I focus on the case where 

total membership is fixed but covered membership is allowed to vary. This set-up essentially 

models a situation in which the outcome has already been designed but the condition not yet 

been calibrated.
25

 Let A used for illustrating the calibration process in the preceding section 

and shown in Figure 2 be the condition C. Furthermore, let O be a generic outcome so that 

any single case i only differs on ci across , but not on oi, and let r be a random variable from 

a uniform distribution in the unit interval. Then oi is determined by 

 

                               

 

Using this formula to construct O ensures that all set-theoretic relations of sufficiency are 

perfectly consistent because oi is always at least as large as any μ(xi) = ci but never exceeds 

the set ceiling.
26

 Figure 3 visualizes all twelve resulting relationships, in sub-figure 3a for the 

low crossover anchor l, in 3b for the medium crossover anchor m and in 3c for the high 

crossover anchor h. The coverage scores resulting from the combination of each membership 

function with each crossover anchor are summarized in the bottom-right corner. 

                                                 
25 The analogy in regression analysis would be the transformation of a regressor to increase the model fit, such as 

logging or squaring, while leaving the regressand untransformed. 
26 If coverage was allowed to work against consistency, the resulting loss in the latter would have to be weighed 

up against gains in the former, but this is another question that requires a separate treatment. 

 

Figure 3: Coverage under different calibration scenarios 
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In the case of c = l,  is highest at about 86% for the case when X is transformed by 

μquad, 82% by μlog, 79% by μlin and 73% by μroot. The difference amounts to a striking 13 

percentage points (pp) between the ―best-performing‖ membership function μquad and the 

―worst-performing‖ μroot, to 7 pp when compared to μlin and to 4 pp in comparison with μlog. 

When c = m at the medium distance between the exclusion and the inclusion anchor, the 

performance ordering remains the same, but differences between  shrink considerably while 

its absolute value decreases across all functions, but to varying degrees. In the case of c = h, 

 keeps decreasing to 65% for the case when X is transformed by μroot, 60% by μlin, 56% by 

μlog and 53% by μquad, but differences increase again to a maximum of about 12 pp between 

μroot and μquad, to 9 pp between μroot and μlog, and to 5 pp between μroot and μlin. To summarize 

this first step, coverage depends considerably on the membership function by which X is 

transformed, but it does so in interaction with the location of the crossover anchor. For a 

relatively low value of c, the quadratic function seems to be the transformational rule of 

choice, whereas for a relatively high value of c, the root functions performs much better. At a 

medium value of c no clear picture emerges. 

Whether these differences in  are representative of base variables that are roughly 

normally distributed cannot be inferred from a single simulation. To examine how  behaves 

across a large set of base variables of equal size, the simulation of X is repeated a thousand 

times and calibration again carried out for each case of c. Figure 4 graphs the distributions of 

 and their means    from these simulations in kernel density plots, for the case of l in 4a, m 

in 4b and h in 4c. The values of    listed in each sub-figure confirm earlier results from 

Figure 3 in that the ordering of performance in coverage remains the same for the cases of c 

= l and c = h. In the case of c = m, however, any differences disappear almost completely, 

whereas variation in coverage remains largest for μquad, followed by μlog, μlin and μroot. 

Figure 4: Distribution of coverage 
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When c = l, on average transformation by μquad instead of μroot increases  by about 

11 pp, instead of μlin by about 6 pp and instead of μlog by about 3 pp. Conversely, when c = h, 

transformation by μquad instead of μroot decreases  by about 13 pp, instead of μlin by about 6 

pp and instead of μlog by about 4 pp. Coverage cannot be changed on average by any 

transformation when c = m. Table 2 shows the results of t-tests for statistically significant 

differences in    when going from transformation through the membership function listed in 

the respective row of the table to transformation through the membership function listed in the 

respective column. All differences     are highly statistically significant at the 0.001 level 

except those generated when c = m. 

 

 

So far, effects have only been analysed for three specifications of c, but it would be 

interesting to see how coverage behaves across a continuous range of choices, spanning 

values from very close to the exclusion anchor to very close to the inclusion anchor. After all, 

the theoretically infinite number of ways to anchor 0.5 is only practically limited by the 

number of internal or external criteria that can be invoked defensibly in each specific case. 

Figure 5 shows how    varies across membership functions and with c from a value close to 

e at c = e + k(i – e) with k = 0.1, to a value close to i at c = e + k(i – e) with k = 0.9, 

using the same data. Coverage scores are least sensitive to changes in c when   root is used for 

transformations, and most sensitive when   quad is used. From the minimum value of c to the 

medium value between e and i,   quad    log    lin    root, while from the medium value 

between e and i to the maximum value of c,   quad    log    lin    root. 
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Does calibration through different membership functions increase or decrease coverage 

uniformly across all individual base variable values? In regression analysis, cases that are 

further away from the relation’s mean-defined centre of gravity have potentially greater 

influence on the coefficient of determination. In fsQCA, no such centre exists. Values far 

away from the crossover anchor may have the same influence on coverage as values close to 

it. However, two membership functions that are not parallel between the exclusion and the 

inclusion anchor have at least one point at which the substantial effect on coverage produced 

by different transformational rules is greater than anywhere else along the range. Let (C  

O) be the total difference in  between the initial transformation of X by some membership 

function μa and the alternative transformation by some other membership function μb so that 

 

        
               

 
   

   
 
   

 
               

 
   

   
 
   

  

 

Then, (C  O)/n would be the average additional contribution of each case induced by 

replacing μa with μb.
27

 However, differences in  generated by going from μa to μb are not 

equally attributable to each xi, essentially making the distribution of all values e  xi  i the 

                                                 
27 Another way of comparing the impact of two different membership functions a and μb on condition set 

membership scores is a coincidence index, for example, 
                   
 
   

                   
 
   

. I thank Charles Ragin for pointing 

this out. Generally, two membership functions for which differences in coverage are large would produce low 

scores on the coincidence index. 

Figure 5: Average coverage scores over continuous crossover range 
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third factor in the determination of . This factor has been neglected in this article by making 

the realistic assumption that most data political scientists use in assignments by 

transformation is roughly normally distributed. More generally, let cj be the condition 

membership score assigned to xi by μb, and let ci be the condition membership score assigned 

to all xi by μa. Then the individual contribution j(C  O) of any case j to  induced by a 

change from μa to μb is given by 

 

         
                                  

 
   

   

   

   
 
   

 

 

where the first summation index in the numerator means ―from i = 1 to n excluding j‖. Some 

cases j add to or subtract from  substantially more than others, depending on their location 

relative to . Positive contributions to coverage are largest for those values xi for which 

calibration produces the greatest positive difference between cj and ci, while negative 

contributions to coverage are largest for those values xi for which calibration produces the 

greatest negative difference between cj and ci. There is a unique value x
pos

 for which positive 

contributions reach a maximum, and a unique value x
neg

 for which negative contributions 

reach a maximum. The values x
pos

 and x
neg

, which may or may not correspond to some actual 

value xi  X, solve the following equation 

 
   
  

 
   
  

  

 

The absolute change cj – ci evaluated at these particular values is then simply given by μb(x
pos

) 

– μa(x
pos

), μb(x
neg

) – μa(x
neg

) respectively. For example, the values x = x
pos

 and x = x
neg

 at 

which a change from μquad to μroot generates the largest positive contribution to , the largest 

negative contribution respectively, both satisfy 

 
      

  
 

      
  

  

 

Substituting the pieces of the functions over the sub-domain e  xi  c where μroot(x)  

μquad(x) and taking their partial derivatives with respect to x yields 
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When this equation is now solved for x, x = x
pos

 is given by 

 

        
     

     
         

    
  

 

   
   

 

The closer any value xi is to this point, and the more such values there are in X, the larger will 

be the increase in  induced by a change from transformation of X through μquad to 

transformation through μroot. Conversely, the point x = x
neg

 at which a change from μquad to 

μroot generates the largest decrease in  is given by equating the partial derivatives with 

respect to x of those pieces of the functions over the sub-domain c  xi  i where μroot(x)  

μquad(x) such that 

 
 

          
    

      

 
    

        
 
  

 

When this equation is now solved for x, x = x
neg

 is given by 

 

        
    

     
         

    
  

 

   
   

 

The closer any value xi is to this point, and the more such values there are in X, the larger will 

be the decrease in  induced by a change from transformation of X through μquad to 

transformation through μroot. It is now clear that when c = m, the average contribution to  

when the base variable is symmetrically distributed must be zero. The fraction in covered 

membership added to, respectively subtracted from,  by all values e  xi  m is offset by all 

values m  xi  i so that on average 

 

        
                  

 
   

   
 
   

 
                  

 
   

   
 
   

    

 

As c shifts away from m, this balance changes in accordance with the induced 

changes in the assignments of numerical set membership scores by μa and μb, making μquad the 

membership function of choice for all c  m and μroot for all c  m. Thus, if membership 

function choice is coverage-based, the logistic function is outperformed under virtually all 

conceivable crossover anchor configurations. 
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The results have important consequences, regardless of whether fsQCA is used in 

small-N studies with a comparative focus or large-N studies aimed at generalization. But it 

carries additional significance for case-oriented research. When c approximates m, coverage 

increasingly provides no guidance as to which membership function is preferred, but the exact 

relation between the condition C and the outcome O will still change, and considerably so for 

cases near x
pos

 and x
neg

. 

In summary, coverage can provide a very useful criterion in the formulation of 

transformational rules if that is consistent with the researcher’s calibration strategy. On the 

basis of significant differences in coverage, the decision to use one specific membership 

function over the other so as to reduce uncovered membership relative to total membership 

receives an explicit and transparent foundation. This parallels the way scholars using 

regression analysis argue on the basis of tests for functional misspecification that evaluate 

reductions in unexplained variation relative to total variation for or against some specific 

functional form. Under very narrow circumstances coverage is of no guidance, but even if the 

focus is on case comparison rather than generalization, researchers still need to consider the 

effects of membership function choice, particularly if cases of interest lie close to points of 

maximum difference. 

Conclusions 
 

Coverage provides a measure of empirical relevance in the context of fuzzy set theoretic 

relations similar to the way the coefficient of determination is used to assess the empirical 

importance of regressors in explaining variation on the regressand. However, scholars 

applying fsQCA have made use of various membership functions in calibration strategies 

involving assignments by transformation without basing their specifications on an explicit and 

transparent foundation. The logistic function has been the default because it is automatically 

applied by the fsQCA software. 

This paper has presented a key reason for motivating a more conscious choice of a 

membership function, namely the increase in empirical relevance as measured by coverage. In 

order to show how coverage can be increased while keeping functional form simple, the 

interactive effects between each one of four common baseline choices for the membership 

function and the anchoring of the crossover have been demonstrated by simulations. 

Irrespective of the crossover anchor, the standard logistic function has always been out-

performed except under very narrow circumstances when positive contributions exactly 

cancel out negative ones. These situations seem highly unlikely to arise in practical research. 
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Viewing the choice of membership function from the perspective of coverage 

maximization opens up a set of questions future research should address. One avenue is the 

development of a procedure which identifies that membership function, or possibly set of 

functions, which maximizes coverage under a number of constraints. These must include pre-

defined anchors. They may also include context-informed restrictions regarding concentration 

and dilation, functional simplicity, and a minimum level of set-theoretic consistency. The 

procedure need not be limited to the four options suggested herein, but could extend to whole 

classes of functions. This article can therefore only be a first awareness-raising step in that 

direction. But the set of questions does not end here. 

Applications of fsQCA with a comparative focus are often interested in the location of 

specific cases rather than generalizations. These also include ―non-cases‖ inconsistent with 

the set-theoretic relation that often attract attention. It has been demonstrated that different 

membership functions may not cause coverage to change while still substantially altering the 

location of individual cases within the set-theoretic relation between condition and outcome. 

Case-oriented studies have to remain alert to this fact and find ways to address inconsistencies 

that may result from the use of different membership functions. 

One of the defining characteristics of QCA is the possibility for equifinality in 

explaining the outcome. In point of fact, the conjunction of causal combinations is the rule 

rather than the exception in applied research. However, for the sake of simplicity and focus, 

equifinality has been ignored in this paper. What effects the use of coverage in the 

determination of transformational rules produces in the context of more complex minimal 

formulas should thus also be examined. 

Lastly, but perhaps the most desirable future development from the macro perspective 

on the continuing debate between proponents of ―traditional‖ regression analysis and (fs)QCA 

would be a clear shift in the ground on which both camps have hitherto met. The vindication 

of QCA as a method and its juxtaposition with regression analysis should give way now to 

more fruitful advances in knowledge about possibilities to learn from the advantages of either 

tool kit of social enquiry. 

References 
 

Achen, Christopher H. 1990. What Does "Explained Variance" Explain?: Reply. Political 

Analysis 2 (1):173-184. 

Banchoff, Thomas. 1999. German Identity and European Integration. European Journal of 

International Relations 5 (3):259-289. 



 22 

Berg-Schlosser, Dirk, Gisèle de Meur, Benoît Rihoux, and Charles C. Ragin. 2009. 

Qualitative Comparative Analysis (QCA) as an Approach. In Configurational 

Comparative Methods: Qualitative Comparative Analysis (QCA) and Related 

Techniques, edited by B. Rihoux and C. C. Ragin. London: Sage Publications. 

Bojadziev, George, and Maria Bojadziev. 2007. Fuzzy Logic for Business, Finance, and 

Management. 2nd ed, Advances in Fuzzy Systems - Applications and Theory. New 

Jersey: World Scientific. 

Christmann, Anna. 2010. Damoklesschwert Referendum? Die indirekte Wirkung ausgebauter 

Volksrechte auf die Rechte religioser Minderheiten. Swiss Political Science Review 16 

(1):1-41. 

Clark, Terry D., Jennifer M. Larson, John N. Mordeson, Joshua D. Potter, and Mark J.  

Wierman. 2008. Applying Fuzzy Mathematics to Formal Models in Comparative 

Politics, Studies in Fuzziness and Soft Computing,. Berlin: Springer. 

Davidson, Russell, and James G. MacKinnon. 1981. Several Tests for Model Specification in 

the Presence of Alternative Hypotheses. Econometrica 49 (3):781-793. 

Freitag, Markus, and Raphaela Schlicht. 2009. Educational Federalism in Germany: 

Foundations of Social Inequality in Education. Governance 22 (1):47-72. 

King, Gary. 1990. Stochastic Variation: A Comment on Lewis-Beck and Skalaban's "The R-

Squared". Political Analysis 2 (1):185-200. 

Klir, George J., Ute H. St. Clair, and Bo Yuan. 1997. Fuzzy Set Theory: Foundations and 

Applications. Upper Saddle River, NJ: Prentice Hall. 

Koenig-Archibugi, Mathias. 2004. Explaining Government Preferences for Institutional 

Change in EU Foreign and Security Policy. International Organization 58 (1):137-174. 

Kosko, Bart. 1993. Fuzzy Thinking: The New Science of Fuzzy Logic. New York: Hyperion. 

Kvist, Jon. 2006. Diversity, Ideal Types and Fuzzy Sets in Comparative Welfare State 

Research. In Innovative Comparative Methods for Policy Analysis, edited by B. 

Rihoux and H. Grimm. New York: Springer Science+Business Media. 

Lewis-Beck, Michael S., and Andrew Skalaban. 1990. The R-Squared: Some Straight Talk. 

Political Analysis 2 (1):153-171. 

Marcussen, Martin, Thomas Risse, Daniela Engelmann-Martin, and Hans Joachim Knopf 

Klaus Roscher. 1999. Constructing Europe? The evolution of French, British and 

German nation state identities. Journal of European Public Policy 6 (4):614-633. 

Marks, Gary, Liesbet Hooghe, and Arjan H. Schakel. 2008. Measuring Regional Authority. 

Regional & Federal Studies 18 (2):111-121. 

Mizon, Grayham E., and Jean-Francois Richard. 1986. The Encompassing Principle and its 

Application to Testing Non-Nested Hypotheses. Econometrica 54 (3):657-678. 

Nurmi, Hannu, and Janusz Kacprzyk. 2007. Fuzzy Sets in Political Science: An Overview. 

New Mathematics and Natural Computation 3 (3):281-299. 

Pennings, Paul. 2003. Beyond Dichotomous Explanations: Explaining Constitutional Control 

of the Executive with Fuzzy-Sets. European Journal of Political Research 42 (4):541-

567. 

Ragin, Charles C. 2000. Fuzzy-Set Social Science. Chicago: University of Chicago Press. 

———. 2006. Set Relations in Social Research: Evaluating Their Consistency and Coverage. 

Political Analysis 14 (3):291-310. 

———. 2008. Redesigning Social Inquiry: Fuzzy Sets and Beyond. Chicago: University of 

Chicago Press. 

———. 2009. Qualitative Comparative Analysis Using Fuzzy Sets (fsQCA). In 

Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and 

Related Techniques, edited by B. Rihoux and C. C. Ragin. London: Sage Publications. 

Ragin, Charles C., Kriss A. Drass, and Sean Davey. 2006. Fuzzy-Set/Qualitative Comparative 

Analysis 2.0. Tucson: Department of Sociology, University of Arizona. 



 23 

Ragin, Charles C., and Peer Fiss. 2008. Net Effects versus Configurations: An Empirical 

Demonstration. In Redesigning Social Inquiry: Fuzzy Sets and Beyond, edited by C. C. 

Ragin. Chicago: University of Chicago Press. 

Ragin, Charles C., Sarah Ilene Strand, and Claude Rubinson. 2008. User's Guide to Fuzzy-Set 

/ Qualitative Comparative Analysis. Tucson: University of Arizona. 

Ramsey, J. B. 1969. Tests for Specification Errors in Classical Linear Least-Squares 

Regression Analysis. Journal of the Royal Statistical Society. Series B 

(Methodological) 31 (2):350-371. 

Rihoux, Benoît, and Charles C. Ragin. 2009. Introduction. In Configurational Comparative 

Methods: Qualitative Comparative Analysis (QCA) and Related Techniques, edited by 

C. C. Ragin and B. Rihoux. London: SAGE. 

———, eds. 2009. Configurational Comparative Methods: Qualitative Comparative Analysis 

(QCA) and Related Techniques. London: SAGE. 

Schneider, Carsten Q., and Claudius Wagemann. 2007. Qualitative Comparative Analysis und 

Fuzzy Sets: Ein Lehrbuch für Anwender und jene, die es werden wollen. Opladen: 

Budrich. 

Skaaning, Svend-Erik. 2007. Explaining Post-Communist Respect for Civil Liberty: A Multi-

Methods Test. Journal of Business Research 60 (5):493-500. 

Smithson, Michael. 1987. Fuzzy Set Analysis for Behavioral and Social Sciences. New York: 

Springer. 

Smithson, Michael, and Jay Verkuilen. 2006. Fuzzy Set Theory: Applications in the Social 

Sciences, Quantitative Applications in the Social Sciences. London: SAGE. 

Thiem, Alrik. 2010. Conditions of Intergovernmental Armaments Cooperation in Western 

Europe, 1996-2006. European Political Science Review 2 (3):forthcoming. 

Verkuilen, Jay. 2005. Assigning Membership in a Fuzzy Set Analysis. Sociological Methods 

Research 33 (4):462-496. 

Veugelers, J., and A. Magnan. 2005. Conditions of Far-Right Strength in Contemporary 

Western Europe: An Application of Kitschelt's Theory. European Journal of Political 

Research 44 (6):837-860. 

Vis, Barbara. 2009. Governments and Unpopular Social Policy Reform: Biting the Bullet or 

Steering Clear? European Journal of Political Research 48 (1):31-57. 

Zadeh, Lofti A. 1965. Fuzzy Sets. Information and Control 8 (3):338–353. 

 

 

 


