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Abstract

Currently,  the  only  algorithm that  yields  an  exact  solution  to  the  boolean 

minimization problem is the well-known Quine-McCluskey, but almost all software 

solutions  employ  different  implementations  because  of  its  two  fundamental 

weaknesses:  it  is  memory  hungry  and  slow  for  a  large  number  of  causal 

conditions.

This paper proposes an alternative to the classical Quine-McCluskey algorithm, 

one  that  addresses  both  problems,  and  especially  the  one  of  memory 

consumption. The solutions of this new algorithm are also exact,  but they are 

produced not by following the cumbersome classical algorithm but using a more 

direct and faster approach.

Memory restrictions limit the number of input variables (causal conditions) at a 

ceiling of about 14 or 15 (because each new variable expands the memory usage 

in a geometric proportion), where this alternative uses only a very small fraction 

of memory and it can process about 20 input variables with acceptable speed.
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1. The problem

Boolean minimization is a technique used in many scientific area, starting with 

computers and electric engineering. In the social sciences, it is used to finding the 

minimum combinations of causal conditions necessary to trigger the outcome. 

The  analysis  is  called  QCA  (from  Qualitative  Comparative  Analysis);  it  was 

introduced by Ragin (1987) and is currently under a strong development process, 

both theoretical and in terms of software implementations.

When studying a phenomenon, QCA researchers usually code the presence of 

a causal condition (or of the outcome) with 1 and the absence with 0, but it is also 

customary to code the presence with upper literals and the absence with lower 

literals. In this notation, “A” is the literal used to code the presence of the causal 

condition A, and “a” is the literal used to coding the absence of the same causal 

condition.

In set logics, “a” is the set of all elements falling outside of the set “A”, so that 

the  reunion  of  the  two  sets  (“a”  AND  “A”)  cover  the  whole  spectrum  of 

possibilities  (in  this  case  the  whole  spectrum  of  possible  states  of  a  causal 

condition), and such a reunion is called TRUE and is equal to 1 (here the unity 

does not represent the presence of a causal condition but is used instead of the 

word “everything”).

The  classical  approach  that  finds  the  minimum  combination  of  literals 

necessary to trigger an outcome is the Quine-McCluskey algorithm, developed by 

McCluskey (1956) but incorporating Quine's (1952, 1955) previous efforts. This 

approach starts from the unique combinations of presence/absence in the truth 

table and minimizes those pairs of combinations differing by only one literal (or 

bit, or state of causal condition).

If A, B and C are three causal conditions that affect the outcome E (or effect), 

this is a simple example of boolean minimization:

A B C E

1 0 1 1

1 1 1 1

1 x 1 1

In both cases, the outcome is present, just like the causal conditions A and C. 

Only the causal condition B has two different states, being absent in the first case 
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and present in the second. Using Mill's (1843) inductive cannons, we can infer 

that causal condition B has no direct effect over the outcome.

The same conclusion is drawned using logic semantics: the two cases can be 

re-written as AbC + ABC. It is visible that AC is a common factor over the two 

cases, therefore the expression can be rewritten as AC(b + B).

As the reunion (here denoted by the plus “+” sign) of the set “b” and the set 

“B” is logically equal to 1, the result of this expression is AC, which is the same 

conclusion with AxC (where “x” is used to indicate the elimination of the causal 

condition B). AC is called a prime implicant, and it can be further minimized if 

different by only one literal with another prime implicant.

Boolean  minimization  is  an  iterative  process  that  implies  comparing  every 

possible pair of input combinations, and in the next iterations every possible pair 

of prime implicants until nothing can be further minimized. The remaining prime 

implicants are then used to construct the so-called “prime implicants chart” in 

order to find the final solution.

For a handful  of  cases and a relatively  small  model,  this  technique can be 

easily  followed  by  hand,  but  for  a  more  complex  model  (with  many  causal 

conditions) and more input combinations entered in the analysis, the number of 

potential  paired comparisons is extremely large and it  grows in a geometrical 

proportion.

The analysis  starts  with the truth table,  where all  possible combinations of 

presence/absence of causal conditions are found. Table 1 presents such a table 

for three causal conditions.

TABLE 1 ABOUT HERE

The number of possible combinations is equal with the number of rows in the 

truth table and it can be computed with the formula 2k, where k is the number of 

causal conditions. For a simpel case with three causal conditions, the truth table 

has eight rows but for a more complicated model with say 15 causal conditions 

the truth table has 215 = 32,768 rows. This is not a very big number, but if 30,000 

combinations would be included in the analysis, the number of potential paired 

comparisons is equal to almost 22,5 millions.
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As 22,5 million comparisons usually yield many millions of prime implicants in 

the next iterations, the number of possible paired comparisons is rapidly growing 

to  infinity.  Even  more,  this  has  to  be  multiplied  with  the  number  of  causal 

conditions to have a complete picture of the total number of comparisons being 

made.  In  our  example,  we  compared  three  pairs:  the  states  of  the  causal 

condition A in those two cases, the state of the causal condition B in those to 

cases and the same for the causal condition C. A minimization can only be made 

if only one such pair is different, therefore every one of them has to be compared. 

For 15 causal conditions, the real number of comparisons is therefore 22.5 million 

multiplied with 15.

An exact solution is obtained only by completing all iterations until nothing can 

be further minimized; the exact Quine-McCluskey algorithm is therefore bound to 

be slow for a large number of causal conditions, therefore this number has to be 

very limited; it usually cannot handle more than 10 or 11 causal conditions.

Efforts  have  been  made  (Dusa,  2007)  to  find  alternative  solutions.  One 

approach is to treat every combination not as a series of 1s and 0s, but as a 

single line number in a 3k matrix. There is a mathematical rule by which two such 

line numbers can be minimized in another line number from the same matrix, 

therefore the total number of comparisons is drastically reduced; the algorithm 

does not work with matrices anymore (a truth table is such a matrix) but with 

vectors of numbers. The memory needed to complete the algorithm is reduced by 

factors of tens, depending of the number of causal conditions in the model.

The  number  of  paired  comparisons  can  be  further  reduced  to  the  strictly 

necessary  because  not  all  comparisons  are  minimizable;  for  example,  if  two 

combinations  differ  by  more  than one literal,  they cannot  be minimized.  The 

solution for this problem is to produce a so-called “differences matrix”: there is a 

finite number of possible (minimizable) paired comparisons, and for each line in 

the 3k matrix the minimizable pairs are found in the powers of 3 using the forward 

rule.

This approach yields exact boolean solutions for a number as large as 14 or 

even 15 causal conditions; however, it still  suffers from the same fundamental 

problem:  every  new  causal  condition  included  in  the  analysis  exponentially 

increases the number of possible paired comparisons. Cutting this number using 

mathematical formulae helps but eventually the algorithm is limited. Even though 
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it doesn't work with matrices that quickly fill up memory, vectors can also grow 

quickly  when  geometrically  multiplied  by  3;  eventually,  these  vectors  will 

certainly fill up the entire computer's memory.

A different algorithm is needed when using more than 15 causal conditions, 

one that would yield the same exact solutions as the classical Quine-McCluskey.

2. The solution

Once the  last  iteration  has  yielded  the final  prime implicants  that  cannot  be 

further minimized, these are used to construct the prime implicants chart. This 

chart has the initial combinations included in the analysis (taken from the truth 

table) positioned on columns and the minimized prime implicants positions on 

rows. Table 2 presents such a chart, using the third, fourth, fifth and sixth initial 

combinations from Table1. These lines are the combinations “010”, “011”, “100“ 

and “101”, or expressed as a combination of literals they are: “aBc”, “aBC”, “Abc” 

and “AbC”.

TABLE 2 ABOUT HERE

When minimizing these combinations,  the exact Quine-McCluskey algorithm 

has yielded three prime impicants: “01x” and “10x” or expressed as literals “aB” 

and “Ab”

The table present some “x” signs in the middle; these signs point the fact that 

a  prime implicant  explain  an  initial  combination  included  in  the  analysis.  For 

example, the prime implicant “aB” explains both “aBc” and “aBC”. Because “aB” 

can lead to  both initial  combinations,  it  is  said  that  it  is  a  superset  of  those 

combinations (or inversely “aBc” and “aBC” are subsets of “aB”).

The  final  solution  is  the  one  that  contains  the  minimum number  of  prime 

implicants needed to cover all  columns in the prime implicants chart.  As both 

minimized prime implicants are essential, the final solution is: “aB + Ab”.

The solution proposed in this paper starts from two fundamental observations:

– the initial combinations are subsets of the prime implicants

– the combinations that were excluded from the analysis are not subsets of 

the minimized prime implicants.
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The remaining combinations are: “000”, “001”, “110” and “111”, or expressed 

as literals: “abc”, “abC”, “ABc” and “ABC”.

Neither  “aB”  nor  “Ab”  can  be  found  in  these  four  excluded  combinations, 

therefore they are not subsets of the minimized prime implicants.

These observations were also noted by Cronqvist (2002) when presenting the 

fundamentals  of  his  Graph  Based  Agent  implemented  in  the  Tosmana  (2007) 

software.  The  Graph  Agent  searches  an  optimum path  in  a  multidimensional 

matrix in order to find  the prime implicants that respect both these observations, 

but this approach is not guaranteed to be exact. Multiple test examples with 11, 

12 and 13 causal conditions have shown that Tosmana yields different solutions 

from the exact Quine-McCluskey algorithm.

Instead, my solution follows an exhaustive calculation that is guaranteed to 

produce an exact solution by making extensive use of the ideas presented in the 

“Mathematical approach to the boolean minimization problem” (Dusa, 2007). 

Following that approach, this new algorithm works with vectors of line numbers 

instead of (multidimensional) complex matrices. There is a finite number of both 

prime implicants and initial combinations, which are all rows in a 3k matrix (where 

k is the number of causal conditions). These combinations were first noted by 

Ragin in his well known “Fuzzy-set social science” (2000), where he called them 

“logically  possible  groupings”.  Table  3  presents  a  3k matrix  for  three  causal 

conditions.

TABLE 3 ABOUT HERE

In this matrix, a different notation is used: the presence of a causal condition is 

coded with 2, the absence of a causal condition is coded with  1 and a minimized 

causal condition is coded with 0. It is a  3k matrix not because there are three 

causal conditions but because of the three codes used: 0, 1 and 2. The 3k matrix 

is best described as containing all possible combinations in base 3; there are such 

matrices for two, three, four and generally for any number of causal conditions.

Using line numbers only, the initial combinations can be found in the lines 17, 

18, 23 and 24. Similarly, the minimized prime implicants can be found on lines 16 

and 22. There is another way to obtain these two line numbers corresponding to 

the prime implicants, bypassing the classical minimization process.
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First, any initial combination of causal conditions can be split in supersets, and 

the number of possible supersets that can be obtained is (as usual) finite. The 

formula to compute this number is:

[1] ∑k=1

n

nk  = 2k−1

where 

[2] nk  =
n!

k !⋅n−k !

Formula  [2]  gives  the  combinations  of k  causal  conditions  taken  from n 

possible ones, using factorial notation.

It sometimes has different notations, such as: C kn or Cn
k

For example, the combination “aBc” has the following 23 – 1 = 7 supersets:

“a”, “B”, “c”

“aB”, “ac”, “Bc” and

“aBc”

Counting out the input combination itself, the actual number of prime 

implicants is 2k – 2.

There are 3 combinations of a single literal, three combinations of two literals 

and one combination involving all three literals, seven in total. In set theory, a set 

is both its superset and its subset: “aBc” is a superset of the same combination 

“aBc”, and inversely it can be thought of its own subset.

The corresponding line numbers in the 3k matrix (in the same order) are:

10, 7, 2

16, 11, 8 and

17

These numbers can be computed following the same technique presented in 

the “Mathematical approach”: using the powers of 3. The elements in the first 

column will be multiplied by 32 = 9, the elements in the second column will be 

multiplied by 31 = 3 and the elements in the third column will be multiplied by 

30 = 1. The multiplication vector is therefore 9, 3 and 1.
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For  example,  the  initial  combination  “101”  from  the  truth  table  is  the 

equivalent of the combination “1 2 1” in the 3k matrix (line 17).

Multiplying with the powers of 3 vector gives:

1⋅32 , 2⋅31 and 1⋅30 which is the combined vector: 9, 6 and 1.

It should be noted that the combined vector is computed in base 10 that starts 

with 0; as line numbers start with 1, each computation should be increased by 1 

in order to obtain the required line numbers.

The rest of the calculation is straighforward:

9 + 1 = 10

6 + 1 = 7

1 + 1 = 2 are the first three line numbers

9 + 6 + 1 = 16

9 + 1 + 1 = 11

6 + 1 + 1 = 8 are the next three line numbers, and

9 + 6 + 1 + 1 = 17 is the initial line number.

It all boils down to computing a vector of powers of 3 and use that to multiply 

each  initial  combination  of  causal  conditions  included  in  the  analysis.  In  this 

example, the four initial combinations are found in the lines 17, 18, 23 and 24 (or 

combinations “121”, “122”, “211” and “212”).

Multiplying every  combination of  k causal  conditions  in  each of  these  four 

initial line numbers yields the following unique supersets (or prime implicants):

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23 and 24.

This first vector was obtained from the combinations to be explained by the 

analysis,  usually  associated  with  the  presence  of  the  outcome  (but  other 

combinations  can  be  explained  as  well);  these  are  the  combinations  used  to 

construct the prime implicants chart, therefore I will call it the “explained vector” 

(from here on denoted by EXP).

Similarly,  the  resulting  supersets  (or  prime  implicants)  obtained  from  the 

excluded combinations (which are found in the lines 14, 15, 26 and 27 in the 3k 

matrix) are:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20, 21, 25, 26, 27

This second vector was obtained from the combinations specifically excluded 

from the analysis, usually associated with the absence of the outcome (but other 
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combinations  can  be  excluded  as  well),  therefore  I  will  call  it  the  “excluded 

vector” (from here on denoted by EXC)

The only  prime implicants that  are in the explained vector  and  not in  the 

excluded one are found on the line numbers: 16, 17, 18, 22, 23, 24. I will call this 

the “reduced explained vector” (from here on denoted by REV)

Four of these line numbers are the initial combinations included in the analysis: 

17, 18, 23 and 24. The fact that they were selected as possible prime implicants 

is a positive proof that this method is complete and exact. Sometimes, the initial 

combinations cannot be minimized at all, in which case they are equal to their 

own prime implicants and the solution is the same as the input combinations.

In this example, the line numbers are indeed minimizable, therefore the initial 

combinations are redundant. Section 4 of this paper presents a mathematical rule 

to find the redundant prime implicants, leaving only the minimum ones. The final 

solution in the example, after removing the initial four combinations, is found in 

the line numbers: 16 and 22.

In the 3k matrix, these line numbers correspond to the base 3 combinations: 

“120” and “210”.

Their correspondents in base 2 are: “01x” and “10x”

Translated in literals,  these  are:  “aB” and “Ab”,  which are the  exact prime 

implicants found in Table 2.

For a small number of causal conditions the solution presented is easy, but the 

algorithm quickly grows in complexity once this number is increased. Fortunately, 

the sets of positive and negative cases are always small, because most of the 

possible causal combinations do not have an association with the outcome.

3. Dealing with the remainders

For a large number of causal conditions, the total number of combinations of 

causal conditions is 2k. These are possible causal patterns that can be observed 

when studying a phenomenon. Some of these causal combinations are associated 

with the presence, and the others with the absence of that phenomenon.

The two sets of combinations are the basis for the two sets of line numbers 

described in the previous section.

Ideally, the researcher should have positive information about each and every 

causal  combination.  However,  there are two big impediments that hinder this 
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ideal situation:

– the social phenomena do not present all possible combinations of causal 

conditions, situation described in QCA as “limited diversity”

– QCA is a special analysis between the quantitative and qualitative worlds, 

working not with thousands of cases as in the quantitative world but with a 

handful of cases as in the qualitative world. It is therefore logically impossible 

to observe every possible combination with only a handful of cases.

Even in the quantitative approach,  the situation would be the same: these 

studies usually employ samples of about 1,000 cases, but for 15 causal conditions 

there are 32,768 logically possible groupings. As some cases are similar due to 

the limited diversity, many possible groupings will remain without any information 

in respect to the outcome. These are the so-called “remainders” and they play a 

crucial role in the minimization process.

These are also the equivalent of the so-called “Don't care”s from the electrical 

engineering field, where 1 represent an open gate and 0 a closed gate. In this 

field,  boolean minimization doesn't  care  if  the gates from the remainders are 

open or not, as long as a more minimum solution is obtained.

The same interpretation is found in the social sciences: even if the outcome for 

these remainders is not known, the researchers include the remainders in the 

minimization process  assuming the outcome is present (or positive). This paper 

does not discuss this assumption, it only offers solutions for the situation when 

these remainders are included in (or excluded from) the analysis. Table 4 present 

a  hypothetical  truth  table  that  contains  positive  cases,  negative  cases  and 

remainders.

TABLE 4 ABOUT HERE

The remainders are coded with the question mark “?”. They are responsible for 

the  exponential  complexity  of  the Quine-McCluskey algorithm;  when  including 

them in the minimization process, the total number of paired comparisons quickly 

explodes to infinity.

The solution proposed in this paper solves this problem, because finding the 

positive minimum prime implicants does not involve the remainders at all: this 

10



approach  uses  only  the  two  sets  of  positive  and  negative  cases  to  find  the 

positive  and  negative  prime  implicants,  and  select  only  those  positive  prime 

implicants that are not in the set of negative ones

Including the prime implicants in the analysis has absolutely no effect over the 

complexity of the algorithm, because the prime implicants chart is contructed 

using only the (very small) set of the explained combinations.

There  is  only  one  possible  situation  where  the  remainders  are  potentially 

influent: the case when they are specifically  excluded from the analysis. In this 

situation,  the  algorithm  should  indeed  take  them  into  account  in  the  EXC 

(excluded) vector and the complexity explodes.

When excluding the remainders, there is no other simpler and faster solution 

but to follow the classical Quine-McCluskey algorithm: without the remainders, 

the number of combinatons to be explained is usually very small and the classical 

algorithm easily finds a solution for any number of causal conditions.

This situation is exactly the inverse of the classical Quine-McCluskey algorithm: 

if there the complexity explodes when including the remainders, here it explodes 

when excluding them.

4. Finding the most parsimonious prime implicants

For  a  large  number  of  causal  conditions,  the  number  of  possible  prime 

implicants grows very quickly, function of the combinations explained and the 

combinations excluded. There is no exact formula to compute this number, as 

some prime implicants are common for multiple initial combinations, but it can 

easily reach hundreds of thousands for more than 10 causal conditions.

REV is computed using an exhaustive method, but many prime implicants are 

not parsimonious as they are already contained by other ones. For example, if 

REV  contains  both  the  combinations  “aB”  and  “aBc”,  the  last  one  is  not 

parsimonious  because  it  is  a  subset  of  the  first.  “aB”  is  a  more  minimum 

expression, therefore “aBc” has to be eliminated.

When all possible eliminations are performed, REV will contain only the most 

parsimonious  expressions.  Using  the  language  of  set  theory,  a  parsimonious 

expression  is  a  superset  that  has  no  other  subsets  in  the  same  vector. 

Conversely, any expression (prime implicant) that has supersets in REV has to be 

eliminated.
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Considering  any  prime  implicant  as  a  line  number  in  the  3k matrix,  its 

supersets are always smaller line numbers and its subsets are always bigger line 

numbers. For example, if the prime implicant of interest is “Bc” (line number 8 in 

Table 3, or combination “0 2 1”), it has two supersets: “B” in the line number 7 

(combination  “0  2  0”)  and  “c”  in  the  line  number  2  (combination  “0  0  1”).

Its subsets are “aBc” in the line number 17 (combination “1 2 1”) and “ABc” in 

the line number 26 (combination “2 2 1”).

As REV contains line numbers, the first step is to sort it in ascending order, so 

that subsets (prime implicants that are not parsimonious) will always be found on 

the right (bigger numbers).

There  are  two  possible  strategies  to  identify  the  most  parsimonious prime 

implicants:

– from right to left: starting from the biggest number, if it has supersets in 

REV it should be eliminated, if not it should be kept and so on

– from  left  to  right:  starting  from  the  smallest  number,  eliminate  all  its 

subsets from REV, continue with the second surviving number and so on.

The first  strategy is  the most  expensive  in  terms of  computer cicles,  as  it 

checkes all prime implicants. The second strategy is the most efficient and faster, 

leaving only one problem to solve: how to find the subsets for a given minimum 

expression.

The solution is again found using the ideas presented in the “Mathematical 

solution”. For three causal variables, the powers of three are: 32, 31 and 30 (or 

simply 9, 3 and 1)

The following illustrative example uses a hypothetical REV, sorted in ascending 

order: (4, 6, 7, 9, 13, 15, 16, 19)

As minimum prime implicants are always among the first (smaller) numbers, 

the algorithm starts with line 4, which in Table 3 is the combination “0 1 0” or “b”, 

and executes the folowing steps:

– find which elements in the base 3 combination are equal to zero: in this 

case, the first and the third

– starting with the rightmost element (the third), progressively add 30 = 1 

two times: from 4 it advances to 5 and from 5 it advances to 6, resulting in the 

vector: (4, 5, 6); line 5 is “bc” and line 6 is “bC”, both subsets of line 4.
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– the next element equal to zero is the first, and the algorithm adds 32 =9 

two times to the previous vector: from (4, 5, 6) it advances to (13, 14, 15) and 

from  (13,  14,  15)  it  advances  to  (22,  23,  24),  resulting  in  the  vector:

(4, 5, 6, 13, 14, 15, 22, 23, 24)

The first number is the starting superset and it should not be eliminated, which 

leaves the final vector of subsets: (5, 6, 13, 14, 15, 22, 23, 24)

Among the initial vector  (4, 6, 7, 9, 13, 15, 16, 19) the subsets of 4 are line 

numbers 6, 13 and 15; they are eliminated and the algorithm continues with the 

remaining vector: (4, 7, 9, 16, 19)

No other subsets of 4 exist, therefore the next superset to be verified is line 

number 7 (combination “0 2 0” or the “B” literal expression). Following the same 

procedure as above, its subsets are: (8, 9, 16, 17, 18, 25, 26, 27)

Among the remaining vector (4, 7, 9, 16, 19), two other prime implicants are 

not parsimonious: 9 and 16; they are eliminated and the surviving vector of the 

most parsimonious prime implicants is: (4, 7, 19)

This elimination approach is very fast because REV is shortened progressively, 

reaching its surviving form in the smallest possible number of iterations. In the 

end it contains the minimum number of the most parsimonious prime implicants 

that are further used to construct the prime implicants chart (which has another 

routine to further remove other redundant prime implicants).

5. Conclusions

In this paper I discuss the inherent problems related to the classical Quine-

McCluskey algorithm and show its weaknesses as well as its strengths.

When the number of combinations included for minimization is (very) large, 

the classical  algorithm becomes extremely  slow and it  eventually  runs out  of 

memory. For this situation I have presented another (exhaustive) procedure that 

produces exact solutions. In the opposite situation, when the number of excluded 

combinations is (very) large, this different approach becomes extremely slow due 

to the computation of the EXC (excluded) vector.

The  algorithm presented  in  this  paper  enhances and extends  the  classical 

Quine-McCluskey: they help and complement each other, function of the situation 

when the remainders are included or excluded from the analysis.
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Table 1. The truth table for three causal conditions

Line A B C Literals

1 0 0 0 abc
2 0 0 1 abC
3 0 1 0 aBc
4 0 1 1 aBC
5 1 0 0 Abc
6 1 0 1 AbC
7 1 1 0 ABc
8 1 1 1 ABC

Table 2. An example of a prime implicants chart

15

aBc aBC Abc AbC
aB x x – –
Ab – – x x



Table 3. The 3k space for three causal conditions

Line A B C Literals

 1 0 0 0
 2 0 0 1 c
 3 0 0 2 C
 4 0 1 0 b
 5 0 1 1 bc
 6 0 1 2 bC
 7 0 2 0 B
 8 0 2 1 Bc
 9 0 2 2 BC
10 1 0 0 a
11 1 0 1 ac
12 1 0 2 aC
13 1 1 0 ab
14 1 1 1 abc
15 1 1 2 abC
16 1 2 0 aB
17 1 2 1 aBc
18 1 2 2 aBC
19 2 0 0 A
20 2 0 1 Ac
21 2 0 2 AC
22 2 1 0 Ab
23 2 1 1 Abc
24 2 1 2 AbC
25 2 2 0 AB
26 2 2 1 ABc
27 2 2 2 ABC

Table 4. A hypothetical truth table containing remainders

Line A B C Outcome

1 0 0 0 ?
2 0 0 1 1
3 0 1 0 1
4 0 1 1 ?
5 1 0 0 ?
6 1 0 1 0
7 1 1 0 0
8 1 1 1 ?
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